抄録
Abstract
We propose a mission concept, called the space interferometer laboratory voyaging towards innovative applications (SILVIA), designed to demonstrate ultra-precision formation flying between three spacecraft separated by 100 m. SILVIA aims to achieve submicrometer precision in relative distance control by integrating spacecraft sensors, laser interferometry, low-thrust, and low-noise micro-propulsion for real-time measurement and control of distances and relative orientations between spacecraft. A 100 m scale mission in a near-circular low Earth orbit has been identified as an ideal, cost-effective setting for demonstrating SILVIA, as this configuration maintains a good balance between small relative perturbations and low risk of collision. This mission will fill the current technology gap towards future missions, including gravitational wave observatories such as the decihertz interferometer gravitational wave observatory (DECIGO), designed to detect the primordial gravitational-wave background, and high-contrast nulling infrared interferometers such as the large interferometer for exoplanets (LIFE), designed for direct imaging of thermal emissions from nearby terrestrial planet candidates. The mission concept and its key technologies are outlined, paving the way for the next generation of high-precision space-based observatories.