抄録
Offer Organization: Japan Society for the Promotion of Science, System Name: Grants-in-Aid for Scientific Research, Category: Grant-in-Aid for Scientific Research (B), Fund Type: -, Overall Grant Amount: - (direct: 12900000, indirect: 3870000)
As one candidate of the next generation solar cells, colloidal quantum dot (CQD) based solar cells (CQDSCs) have attracted considerable interest and developed rapidly during the last few years. CQDSCs have some unique advantages such as the band-gap tunability, high absorption coefficient, multiple exciton generation (MEG) possibility and low cost for preparation. Although theoretical energy conversion efficiency of CQDSCs has been predicted to be about 44% much higher than the Shockley-Queisser limit (33%), it is still about 8% at present time (2014). Therefore, fundamental studies on the mechanism for improving energy conversion efficiency of CQDSCs are very important. In this project, we focus on clarifying the photoexcited carrier dynamics, especially the dynamics of MEG and improving the charge separation and suppress recombination in QD heterojunction solar cells by controlling the interfaces of CQDSCs as well as the approaches to improving the energy conversion efficiency.