研究業績リスト
ジャーナル論文 - rm_published_papers: Scientific Journal
Vision-based navigation and obstacle detection flight results in SLIM lunar landing
公開済 01/2025
Acta Astronautica, 226, 772 - 781
ジャーナル論文 - rm_published_papers: International Conference Proceedings
Image Recognition Imitating Saccadic Eye Movement in Grid Cell Net
公開済 09/11/2024
2024 Joint 13th International Conference on Soft Computing and Intelligent Systems and 25th International Symposium on Advanced Intelligent Systems (SCIS&ISIS), 1 - 6
ジャーナル論文 - rm_published_papers: Scientific Journal
公開済 03/2024
Journal of Advanced Computational Intelligence and Intelligent Informatics, 28, 2, 380 - 392
ジャーナル論文 - rm_published_papers: International Conference Proceedings
The Challenges for GenAI in Social and Individual Well-Being.
公開済 2024
AAAI Spring Symposia, 365 - 367
ジャーナル論文 - rm_published_papers: International Conference Proceedings
公開済 09/2023
Explainable and Transparent AI and Multi-Agent Systems (Lecture Notes in Computer Science), 14127
ジャーナル論文 - rm_misc: Others
- Kido, T. and K. TakadAAAI 23 Spring Symposium Report on Socially Responsible AI for Well-Bing
公開済 20/06/2023
AI Magazine, 1 - 2
ジャーナル論文 - rm_published_papers: Scientific Journal
Directional Pareto Front and Its Estimation to Encourage Multi-Objective Decision-Making
公開済 02/2023
IEEE Access, 11, 20619 - 20634
ジャーナル論文 - rm_misc: Others
運転事故防止に向けた睡眠トータルケア:運転前の睡眠状況把握と運転後の睡眠改善
公開済 02/2023
自動車技術, 77, 2
ジャーナル論文 - rm_published_papers: Others
公開済 2023
進化計算学会論文誌, 14, 1, 40 - 54
ジャーナル論文 - rm_published_papers: Scientific Journal
Adaptive Action-prediction Cortical Learning Algorithm under Uncertain Environments
公開済 2023
International Journal of Hybrid Intelligent Systems (to appear), 1 - 21
The cortical learning algorithm (CLA) is a time series prediction algorithm. Memory elements called columns and cells discretely represent data with their state combinations, whereas linking elements called synapses change their state combinations. For tasks requiring to take actions, the action-prediction CLA (ACLA) has an advantage to complement missing state values with their predictions. However, an increase in the number of missing state values (i) generates excess synapses negatively affect the action predictions and (ii) decreases the stability of data representation and makes the output of action values difficult. This paper proposes an adaptive ACLA using (i) adaptive synapse adjustment and (ii) adaptive action-separated decoding in an uncertain environment, missing multiple input state values probabilistically. (i) The proposed adaptive synapse adjustment suppresses unnecessary synapses. (ii) The proposed adaptive action-separated decoding adaptively outputs an action prediction separately for each action value. Experimental results using uncertain two- and three-dimensional mountain car tasks show that the proposed adaptive ACLA achieves a more robust action prediction performance than the conventional ACLA, DDPG, and the three LSTM-assisted reinforcement learning algorithms of DDPG, TD3, and SAC, even though the number of missing state values and their frequencies increase. These results implicate that the proposed adaptive ACLA is a way to making decisions for the future, even in cases where information surrounding the situation partially lacked.