研究業績リスト
ジャーナル論文 - rm_published_papers: Scientific Journal
Optical Imaging of Microvascular Function in the Brain
公開済 07/2025
IEEE Journal of Selected Topics in Quantum Electronics, 31, 4: Adv. in Neurophoton. for Non, 1 - 10
ジャーナル論文 - rm_published_papers: International Conference Proceedings
公開済 29/06/2025
2025 23rd International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers), 1953 - 1956
ジャーナル論文 - rm_published_papers: Scientific Journal
公開済 17/05/2025
GeroScience
ジャーナル論文 - rm_published_papers: Scientific Journal
公開済 12/12/2024
The EMBO Journal, 44, 2, 382 - 412
Abstract
Neural stem cells (NSCs) can give rise to both neurons and glia, but the regulatory mechanisms governing their differentiation transitions remain incompletely understood. Here, we address the role of cyclin-dependent kinase inhibitors (CDKIs) in the later stages of dorsal cortical development. We find that the CDKIs p18 and p27 are upregulated at the onset of astrocyte generation. Acute manipulation of p18 and p27 levels shows that CDKIs modulate lineage switching between upper-layer neurons and astrocytes at the transitional stage. We generate a conditional knock-in mouse model to induce p18 in NSCs. The transcriptomic deconvolution of microdissected tissue reveals that increased levels of p18 promote glial cell development and activate Delta-Notch signaling. Furthermore, we show that p18 upregulates the homeobox transcription factor Dlx2 to subsequently induce the differentiation of olfactory bulb interneurons while reducing the numbers of upper-layer neurons and astrocytes at the perinatal stage. Clonal analysis using transposon-based reporters reveals that the transition from the astrocyte to the interneuron lineage is potentiated by p18 at the single-cell level. In sum, our study reports a function of p18 in determining the developmental boundaries among different cellular lineages arising sequentially from NSCs in the dorsal cortex.
ジャーナル論文 - rm_published_papers: Scientific Journal
公開済 16/09/2024
Microcirculation
ABSTRACT
Objective
This study aimed to examine the spatiotemporal coherence of capillary lumen fluctuations in relation to spatial variations in the pericyte lining in the cortex of anesthetized mice.
Methods
Two‐photon microscopic angiography data (previously published) were reanalyzed, and spatial variations in capillary diameter fluctuations at rest and in capillary lining with vascular mural cells were measured along capillary centerlines.
Results
Relatively large diameters of the capillaries (5.5 μm) coincided with a dense pericyte lining, while small capillaries (4.3 μm) had a sparse pericyte lining. Temporal variations had a frequency of about 0.1 Hz with an amplitude of 0.5 μm, which were negatively correlated with pericyte lining density. Spatial frequency analysis further revealed a common pattern of spatial variations in capillary diameter and pericyte lining, but temporal variations differed. The temporal variations in capillary lumens were locally distinct from those in neighboring locations, suggesting intrinsic fluctuations independent of the pericyte lining.
Conclusions
Capillary lumens in the brain exhibit slow microfluctuations that are independent of pericyte lining. These microfluctuations could affect the distribution of flowing blood cells and may be important for homogenizing their distribution in capillary networks.
ジャーナル論文 - rm_published_papers: Scientific Journal
公開済 15/08/2024
Journal of Applied Physiology
This investigation evaluated the microvascular permeability and ultrastructure of skeletal muscle capillaries in skeletal muscle of diabetic (DIA) rats using two-photon laser scanning microscopy (TPLSM) and transmission electron microscopy (TEM). Microvascular permeability was assessed in the tibialis anterior muscle of control (CON) and DIA (streptozocin) male Wistar rats (n = 20, 10-14 wk) by in vivo imaging using TPLSM after fluorescent dye intravenous infusion. Fluorescent dye leakage was quantified to determine microvascular permeability. The ultrastructure was imaged by TEM ex vivo to calculate the size and number of intercellular clefts between capillary endothelial cells and also intracellular vesicles. Compared with control, the volumetrically determined interstitial fluorescent dye leakage, the endothelial cell thickness, and the number of intercellular clefts per capillary perimeter were significantly higher, and the cleft width was significantly narrower in TA of DIA (interstitial fluorescent dye leakage, 2.88 ± 1.40 vs. 10.95 ± 1.41 µm3 x min x 106; endothelial thickness 0.28 ± 0.02 vs. 0.45 ± 0.03 µm; number of intercellular clefts per capillary perimeter 6.3 ± 0.80 vs. 13.6 ± 1.7 /100 µm; cleft width 11.92 ± 0.95 vs. 8.40 ± 1.03 nm, CON vs. DIA respectively, all p <0.05). The size of intracellular vesicles in the vascular endothelium showed an increased proportion of large vesicles in the DIA group compared to the CON group (p < 0.05). Diabetes mellitus enhances the microvascular permeability of skeletal muscle microvessels, due, in part, to a higher density and narrowing of the endothelial intercellular clefts, and larger intracellular vesicles.
ジャーナル論文 - rm_published_papers: Scientific Journal
公開済 13/03/2024
Journal of Cerebral Blood Flow & Metabolism, 44, 9, 1591 - 1607
Neurovascular coupling (NVC) is the functional hyperemia of the brain responding to local neuronal activity. It is mediated by astrocytes and affected by subcortical ascending pathways in the cortex that convey information, such as sensory stimuli and the animal condition. Here, we investigate the influence of the raphe serotonergic system, a subcortical ascending arousal system in animals, on the modulation of cortical NVC and cerebral blood flow (CBF). Raphe serotonergic neurons were optogenically activated for 30 s, which immediately awakened the mice from non-rapid eye movement sleep. This caused a biphasic cortical hemodynamic change: a transient increase for a few seconds immediately after photostimulation onset, followed by a large progressive decrease during the stimulation period. Serotonergic neuron activation increased intracellular Ca2+ levels in cortical pyramidal neurons and astrocytes, demonstrating its effect on the NVC components. Pharmacological inhibition of cortical neuronal firing activity and astrocyte metabolic activity had small hypovolemic effects on serotonin-induced biphasic CBF changes, while blocking 5-HT1B receptors expressed primarily in cerebral vasculature attenuated the decreasing CBF phase. This suggests that serotonergic neuron activation leading to animal awakening could allow the NVC to exert a hyperemic function during a biphasic CBF response, with a predominant decrease in the cortex.
ジャーナル論文 - rm_published_papers: Scientific Journal
Detection of backside coupled propagating surface plasmon resonance on the sidewall of a wafer
公開済 01/11/2023
AIP Advances, 13, 11
We proposed a surface plasmon resonance (SPR) sensor structure that utilized a glass wafer with a diffraction grating and an n-type silicon piece bonded near the SPR coupling site. This configuration enabled surface plasmon excitation from the back of the substrate without the unwanted interaction between the excitation light and the sample, and electrical detection of the SPR response by a 0.7-eV Schottky barrier at the Au/n-Si interface formed on the sidewall of the silicon piece was achieved. Experimental evaluation of the surface plasmon coupling performance was conducted, showing clear peaks in the photocurrent for various wavelengths in the NIR-II window, ranging from 1100 to 1300 nm. The device’s ability to detect propagating surface plasmons as a photocurrent was confirmed; the results indicated a consistent trend with theoretical and numerical calculations. Since the device was composed of a glass substrate, the use of wavelengths shorter than the near-infrared wavelength was possible, including visible wavelengths where the optical absorption by water is negligible. Thus, our proposed sensor provides a compact and efficient solution for SPR sensing in aqueous solutions.
ジャーナル論文 - rm_published_papers: Scientific Journal
Acceleration of the Development of Microcirculation Embolism in the Brain due to Capillary Narrowing
公開済 08/2023
Stroke, 54, 8, 2135 - 2144
BACKGROUND:
Cerebral microvascular obstruction is critically involved in recurrent stroke and decreased cerebral blood flow with age. The obstruction must occur in the capillary with a greater resistance to perfusion pressure through the microvascular networks. However, little is known about the relationship between capillary size and embolism formation. This study aimed to determine whether the capillary lumen space contributes to the development of microcirculation embolism.
METHODS:
To spatiotemporally manipulate capillary diameters in vivo, transgenic mice expressing the light-gated cation channel protein ChR2 (channelrhodopsin-2) in mural cells were used. The spatiotemporal changes in the regional cerebral blood flow in response to the photoactivation of ChR2 mural cells were first characterized using laser speckle flowgraphy. Capillary responses to optimized photostimulation were then examined in vivo using 2-photon microscopy. Finally, microcirculation embolism due to intravenously injected fluorescent microbeads was compared under conditions with or without photoactivation of ChR2 mural cells.
RESULTS:
Following transcranial photostimulation, the stimulation intensity-dependent decrease in cerebral blood flow centered at the irradiation was observed (14%–49% decreases relative to the baseline). The cerebrovascular response to photostimulation showed significant constriction of the cerebral arteries and capillaries but not of the veins. As a result of vasoconstriction, a temporal stall of red blood cell flow occurred in the capillaries of the venous sides. The 2-photon excitation of a single ChR2 pericyte demonstrated the partial shrinkage of capillaries (7% relative to the baseline) around the stimulated cell. With the intravenous injection of microbeads, the occurrence of microcirculation embolism was significantly enhanced (11% increases compared to the control) with photostimulation.
CONCLUSIONS:
Capillary narrowing increases the risk of developing microcirculation embolism in the venous sides of the cerebral capillaries.
ジャーナル論文 - rm_published_papers: Scientific Journal
Capillary responses to functional and pathological activations rely on the capillary states at rest
公開済 08/02/2023
Journal of Cerebral Blood Flow & Metabolism, 43, 6, 1010 - 1024
Brain capillaries play a crucial role in maintaining cellular viability and thus preventing neurodegeneration. The aim of this study was to characterize the brain capillary morphology at rest and during neural activation based on a big data analysis from three-dimensional microangiography. Neurovascular responses were measured using a genetic calcium sensor expressed in neurons and microangiography with two-photon microscopy, while neural acivity was modulated by stimulation of contralateral whiskers or by a seizure evoked by kainic acid. For whisker stimulation, 84% of the capillary sites showed no detectable diameter change. The remaining 10% and 6% were dilated and constricted, respectively. Significant differences were observed for capillaries in the diameter at rest between the locations of dilation and constriction. Even the seizures resulted in 44% of the capillaries having no detectable change in diameter, while 56% of the capillaries dilated. The extent of dilation was dependent on the diameter at rest. In conclusion, big data analysis on brain capillary morphology has identified at least two types of capillary states: capillaries with diameters that are relatively large at rest and stable over time regardless of neural activity and capillaries whose diameters are relatively small at rest and vary according to neural activity.